
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  
10	  
11	  
12	  
13	  
14	  
15	  
16	  
17	  
18	  
19	  
20	  
21	  
22	  
23	  
24	  
25	  
26	  
27	  
28	  
29	  
30	  
31	  
32	  
33	  
34	  
35	  
36	  
37	  
38	  
39	  
40	  
41	  
42	  
43	  
44	  
45	  
46	  
47	  
48	  
49	  
50	  
51	  
52	  
53	  
54	  
55	  
56	  
57	  
60	  
61	  
62	  
63	  
64	  
65	  

RDladder: Resolution-Duration Ladder for
VBR-encoded Videos via Imitation Learning

Lianchen Jia1, Chao Zhou2,5, Tianchi Huang1, Chaoyang Li1, Lifeng Sun1,3,4,5
1Department of Computer Science and Technology, Tsinghua University 2Beijing Kuaishou Technology Co., Ltd.

3BNRist, 4Key Laboratory of Pervasive Computing (Tsinghua University), Ministry of Education, China
5Corresponding Authors. {jlc21@mails.,sunlf@}tsinghua.edu.cn, zhouchao@kuaishou.com

Abstract—With the rapid development of the streaming system,
a large number of videos need to be transcoded to multiple copies
according to the encoding ladder, which significantly increases the
storage overhead than before. This scenario demonstrates the
prosperity of streaming media but also presents new challenges
about achieving the balance between better quality for users and
less storage cost. In our work, we observe two significant points.
The first one is selecting proper resolutions under certain network
conditions can reduce storage costs while maintaining a great
quality of experience. The second one is the segment duration
is critical, especially in VBR-encoded videos. Considering these
points, we propose RDladder, a resolution-duration ladder for
VBR-encoded videos via imitation learning. We jointly optimize
resolutions and duration using neural networks to determine the
combination of these two metrics considering network capacity,
video information, and storage cost. To get more faithful results,
we use over 500 videos, encoded to over 2,000,000 chunks, and
collect real-world network traces for more than 50 hours. We test
RDladder in simulation, emulation, and real-world environments
under various network conditions, and our method can achieve
near-optimal performance. Furthermore, we discuss the influence
between the RDladder and ABR algorithms and summarize some
characteristics of RDladder.

I. INTRODUCTION

Recent years have seen a rapid increase in the streaming
network traffic, and online video streaming has become the
prevalent way of video consumption, especially under the
COVID-19 [1]. The most widely used technology for video
streaming is HTTP Adaptive Streaming (HAS). On the server-
side, raw videos are pre-chunked to fix duration, such as 4s or
2s recommended by [2], and pre-encoded different resolutions
to several bitrates or quality levels. On the client-side, users
use the adaptive bitrate algorithm (ABR) to dynamically adapt
the video streaming quality based on the current network
conditions to achieve a higher quality of experience (QoE).

The encoding ladder guides the server to encode the raw
videos to different bitrates or quality levels and try to get
the higher QoE using the proper setting. Previous works
mainly consider the relationship between the resolution and the
bitrate, but we find other factors also significantly affect video
streaming. First, we find that not all resolutions are necessary.
The users of the edge cluster seldom have the chance to watch
the resolution whose bitrates are much lower or higher than the
bandwidth. Therefore, choosing the appropriate combination
of resolutions can reduce the overhead of storage in video
servers, which is more critical in current prosperous streaming
media. In addition, past works use recommended fixed video

chunk duration, which is indeed an excellent duration setting
after extensive experiments and analysis by many researchers.
However, different duration have their own advantages and dis-
advantages, especially in VBR-encoded videos. VBR-encoded
methods encode simple scenes with fewer bits and complex
scenes with more bits [3]. Supposing the duration is short, such
as 1s, additional overheads will be introduced, which causes
the short segment duration will have more keyframes than the
long segment duration in the same quality level. In addition,
longer video segments can reduce the number of requests from
the client, which is significant to overall download time in the
scenario with high link latency and large throughput.

Previous works have also noticed part of these two critical
factors in the video stream performance and overhead of the
video servers, such as [4] [5]. However, it is hard to set the
fixed rules to select proper resolutions and duration as the
diversity of network and video content.

So in this context, we propose RDladder, a per-title
resolution-duration ladder that jointly optimizes for resolutions
and duration for VBR-encoded videos. RDladder leverages im-
itation learning to train the neural network (NN) to determine
the combination of the resolutions and duration, which has
the potential to automatically find the most suitable ladder
and avoid too much manual engineering. We do not focus
on replacing the traditional encoding ladder, but we argue
that before we optimize the resolution-quality levels pairs, we
should first consider what resolution-duration combinations
we need. So we consider the transcoding process as the
sequential process and select the proper resolution-duration
pairs with network conditions, video information, and storage
cost. We design an objective function including the QoE and
the storage cost to balance the trade-off between the high
video quality and less storage cost, and determine the end time
via the objective function. We collect more than 500 videos
and encoded them to over 2,000,000 chunks for RDladder to
learn, and we use over 50 hours real-world network traces and
use different bandwidth utilization to increase the diversity of
network conditions.

To the best of our knowledge, our study is the first to explore
the new design space of joint optimization of resolutions and
duration in video transcoding. In general, we summarize the
contributions as follows:

• We analyze two significant factors that affect stream-
ing performance, resolutions and duration. Our analysis

INFOCOM 2023 1570832283

1



shows that selecting only partial proper resolutions and
taking full use of the advantage of different duration can
achieve great QoE with less storage cost.

• Based on our analysis, we design RDladder, using neural
networks for joint optimization of resolutions and dura-
tion to get resolutions-duration ladders.

• We test RDladder in simulation, emulation, and real-
world environments with various videos and network
conditions. Our results show that RDladder can achieve
near-optimal performance. Furthermore, we discuss the
influence between RDladder and ABR algorithms and
summarize some characteristics of the results of RDlad-
der.

II. RELATED WORK

A. Encoding ladder

The purpose of the encoding ladder is to find the optimal
encoding setting to provide the highest quality for the user
under limitations such as the network bandwidth or storage
cost.

The fixed encoding ladders are recommended by the plat-
forms of the video, such as [6] [7] [8] to gain high video
quality. However, these ladders can not make full use of
the information of video and network. The complexity of
the content is the aspect that gets the most attention. In the
work [9], the authors hope to determine resolution-bitrate pairs
that closely reflect the convex hull of R-D curves. The authors
in [10] try to find the optimal selection of the encoding ladder
based on the network setting and the client status. Recently,
the cost of the storage is getting more and more attention, such
as [4] which comprehensively considers the influence of video
features, network information, and the storage cost to find a
better per-chunk ladder. The work of [11] uses the information
of player feedback behavior, and the work of [12] considers
the influence of different codecs.

These works focus on optimizing the pair of the resolutions
and the bitrates. However, with the development of streaming
media, the number of videos that need transcoding has in-
creased significantly. If the video servers use the recommended
resolutions to transcode these massive amounts of videos, the
computing and storage cost are hard to accept. So, in our
work, we argue that before the traditional works finding the
most suitable bitrate for every resolution, finding the optimal
combination of resolutions and duration is more significant.

B. Duration in streaming system

Previous works to make full use of different duration mainly
focus on duration switching and variable duration.

It is the most straightforward idea to encode the video to
different duration in multiple copies. The work [5] analyzes
the data of Youtube by catching the data packet when the
video plays. They find that Youtube switches the duration to
reduce data waste. Some other works consider the method
to switch the duration to improve the QoE, such as [13] (use
mathematical method) and [14] (consider the buffer). However,

these works have to store more video chunks, which is hard
to accept by the video content provider.

Another aspect of the research of duration is the variable
duration. The work [15] proposes to divide the video segments
near the position of the I-frame, which can reduce the intro-
duction of additional I-frame. Recent work [16] proposes a
new method to produce the variable duration for the streaming
system. They consider the network conditions and the ABR
algorithm, and for each video, they brute-force search all
combinations of each frame to gain the maximum of the QoE.
These works use variable duration to reduce the size of video
segments. However, they are not flexible enough compared
with duration switching, which can not fully use the advantage
of different duration.

For our work, we still consider using duration switching,
which makes most of the benefits from the different duration,
and our system does not need to store multiple copies, which
avoids the shortcoming of previous works.

III. MOTIVATION

A. Analysis about resolution selection

The selection is limited under the constraint of network
conditions and ABR algorithms We plot the distribution
of the highest resolution under average bandwidth using four
network trace datasets, FCC [17], HSDPA [18] , Oboe [19] and
HDFS [20] in Figure 1(a). We divide the average bandwidth
into seven classes using the bitrate ladder of Pensieve [21] (a
popular ABR algorithm). We can see that in FCC and HSDPA,
the users seldom have a chance to watch 2k videos, and in
HDFS, video encoded from 240p to 480p is probably not very
useful for the streaming system. Through the above analysis,
we can find that not all resolution candidates are necessary
under certain network conditions.

Then we demonstrate that some resolutions are rarely se-
lected by specific ABR algorithms. In Figure 1(b), we show
the result in FCC, using three ABR algorithms (Pensieve,
Buffer-base (BB) [22], MPC (In this work, we use Robust-
MPC ) [23]). Due to the algorithmic mechanism and certain
network conditions, the selected probability of all resolutions
is different. The 1440p is seldom chosen by these three ABR
algorithms, and the 1080p is hardly chosen by Pensieve.

Properly removing some resolution candidates has an ac-
ceptable influence on the streaming performance Through
the above analysis of the network conditions and the ABR
algorithms, a straightforward idea is to remove the resolution
with the least probability of being selected. We performed
experiments on FCC to calculate their QoE using the function
recommended by Pensieve as Figure-1(c). As Pensieve is
trained with all resolution candidates, we use BB and MPC as
the ABR algorithm in this experiment. As we have analyzed
above, the 1440p and 1080p resolutions are the least likely to
be selected by MPC and BB in FCC, so we remove 1440p
called MPC − 1 and BB − 1, and remove 1440p and 1080p
called MPC − 2, BB − 2 respectively. As we can see, the
QoE of these six tracks is close in most cases, especially only

2



(a) The distribution of the highest resolution under aver-
age bandwidth

(b) The selection of ABR in FCC (c) The QoE removing some resolu-
tion levels

(d) The relationship between the duration
and the size in VBR

(e) The prediction results using past prediction (f) The prediction results using robust prediction

Fig. 1. Analysis about resolutions and duration

removing 1440p. So it is acceptable for QoE to remove some
resolutions properly in most cases.

B. Analysis about the segment duration
The advantages of long duration Intra-frames(I-frames)

are usually larger than predicted or bidirectionally predicted
frames. In the HAS system, the chunk must start with I-frames,
as this video chunk does not have any frames to reference. So,
a short duration will introduce additional I-frames to guarantee
this rule.

We choose two free videos commonly used in research, Big
Buck Bunny (BBB) and Tears Of Steal (TOS), to encode. We
scaled the original dimensions to 2160p, 1080p, 720p, 480p,
240p using bicubic and filter the frame rate to 24fps using the
filter of FFmpeg1. We encode these videos with five different
duration from 1s to 5s separately, i.e., durϵ{1, 2, 3, 4, 5}, and
we also use four different Constant Rate Factor (CRF), i.e.,
crfϵ{16, 22, 28, 34} to get the average results in different
video quality level. We plot the relative video size compared
with the video with 1s duration in Figure-1(d). We can see
a significant size reduction as the duration increases. The
240p and 480p reduced nearly 20%-30% size when using 5s
duration,

So in this experiment, we can see the longer duration can
reduce the video size in the same quality level, which gives
the client more chance to get higher resolution videos.

The advantages of short duration Although the longer
duration can reduce the video’s size, the choice of the duration
is challenging in the streaming system.

When meeting the fluctuating network, the short video can
quickly adapt to the change in bandwidth. We synthesize a
network trace with significant fluctuation to show the advan-
tage of short duration. We consider the trace changed every
10s between 1mbps and 0.5mbps. We use two methods of
bandwidth prediction to select the highest resolution below

1https://ffmpeg.org/

the predicted bandwidth at each step. One method is past,
which considers past video chunk size and the past delay.
i.e., prepast = past chunk size

delay . The other method, called
robust, which is the same as the prediction method of Robust-
MPC (RMPC), considers the harmonic mean of the past five
bandwidths and the max error of the past five bandwidth
estimation, i.e., prerobust = harmonic mean

1+max error . We show the
results of prediction results compared with the actual results,
the result of past in Figure-1(e) and the result of robust
in Figure1(f). We can see that the short duration performs
better than the long duration in both results. For past, a
short-horizon and aggressive method, the long duration causes
large rebuffering time such as the 60s-80s. And for robust,
a relatively conservative method, can not make full use of
the bandwidth. For example, in the 40s-60s, the bandwidth
utilization is less than 50%.

C. The challenge in optimizing resolutions and duration
The analysis above has shown the importance of the proper

resolutions and duration. However, it is not easy to find a
simple way to fully use their advantages.

For the resolution selection, removing the least selected
candidates is the simplest way. However, as we can see in
Figure 1(c), such as MPC and MPC − 2, we still can see
clearly QoE drop when QoE beyond 2. If we want fewer
candidates, the drop will be more obvious. So it is not easy to
achieve the balance between the video quality and the storage
cost.

As for the duration, we can see that different duration have
their own advantages and disadvantages. The straightforward
idea is to encode each video chunk to different duration and
switch them based on the network. Although this method
can surely improve the QoE in theory, it has two obvious
disadvantages. The first one is the storage cost. Assuming
we have m different duration, this method needs to cost m
time storage overhead compared with the default one fixed
duration, which is hard to accept by the video server. The

3



second weakness is the decision complexity which signif-
icantly increases due to more choices. Just taking RMPC
as an example, in the default setting with n candidates and
looking 5-step ahead, the decision complexity is O(n5), but
in this setting, the complexity becomes O((mn)5), which is
hard to meet the requirements of real-time decision making in
real deployments. As for the RL-based ABR algorithm, more
action space will bring difficulties for the neural networks to
learn a precise strategy.

IV. METHODS

Motivated by the analysis of selecting appropriate reso-
lutions and duration, we propose RDladder, using a neural
network to select the proper combinations of resolutions
and duration. In this section, we introduce three main ideas
of RDladder, joint optimization of resolutions and duration,
training NN via imitation learning, and an objective function
to balance the trade-off between the QoE and the storage cost.

Joint optimization of resolutions and duration
To solve the large storage cost and high calculated com-

plexity, we propose joint optimization of resolutions and du-
ration, which means we select the most appropriate resolution-
duration pairs from all candidates. In this way, we select the
resolutions with specific duration and do not need to store
every duration chunks for each resolution. If we select reso-
lutions first and then find the suitable duration sets, we might
miss some better results as the duration significantly influences
the selection of resolution. For example, the 1080p with 5s
may seldom be chosen under the restriction of bandwidth, but
the 1080p with 1s may have more chance.

Traning RDladder via imitation learning
One-step or Sequential decision?
Suppose we have the resolution candidates n, the duration

candidates m, then the number of these two metric combina-
tions is mn. For each candidate, we have two choices, pick it
or not, so the complexity becomes O(2mn). To eliminate the
enormous complexity, we consider the lifetime of selecting one
of the candidates as a Markov Decision Process(MDP). So in
every step, we choose one from the combinations that have
not been chosen until the objective function determines the
end signal. We can reduce the complexity from the O(2mn)
to O(mnt)(t is the step that is controlled by the objective
function).

Furthermore, many video content providers do not transcode
video to all resolutions but partial default settings. As the
video becomes hot, more resolutions will be transcoded to
improve QoE. So sequential decisions are closer to real-world
situations.

Why imitation learning?
It is hard to find the appropriate setting for every state using

specific expert rules, as the diversity of the network and the
video contents. Moreover, as we have discussed above, each
selection has its own pros and cons, and these features are
dynamic with the network and the ABR strategies. So we
propose using imitation learning [24] to automatically learn
a policy to determine the combinations of resolutions and

Raw Videos

Edge Cluster

New 
Combination

Network
Status

Server Client

Quality of User
&End Signal

Storage Cost

Transcoding

Video 
Chunk

Video 
Chunk

Fig. 2. RDladder System Overview

ExpertVirtual Player
Neural 

Network

Experience 
Buffer

Feed 
data

New
Combination

Expert
action

Submit
Samples

Fig. 3. Training Workflow Overview

duration. Imitation learning allows the NN to interact with
the environment to gain more data and use some supervised
learning method to minimize the distance between the current
strategy and the expert strategy, which avoids the design of
reward function and brings higher data utilization compared
with the reinforcement learning. In detail, at time t, the neural
network interacts with the environments s using the policy πt.
Then the expert solver finds the optimal policy π∗

t at this time,
and the NN calculates the loss l(πt, π

∗
t ). After that, the system

chooses the action from the policy πt and the environment s
become st+1. We can reduce the gap between them and get a
new policy π̂ as Eq-1:

π̂ = argminEs∼dπ
[l(πt, π

∗
t )] (1)

The design of objective function
In our system, we hope to balance the trade-off between

the QoE and storage cost in the video server. It is hard to set
the absolute weight, as we are not sure what additional size
we desire to cost to achieve higher QoE in different videos
and different network conditions. For example, if we consider
that it is acceptable to get higher 5 QoE score with more than
50MB cost for a 200MB video, this cost might be unacceptable
for a 20MB video.

So we choose the relative cost compared with the default
setting as the score of the storage cost. We consider the video
size with the default 4s duration and all resolutions as the base
size, i.e. base =

∑
res∈all res sizedur=4. We use the weight

w to balance the QoE and the additional storage cost. So, we
set the objective function as :

sc = QoE + w(1− sizeall/base) (2)
Furthermore, we use the objective function to decide

whether to terminate this round of iteration. In training, for
every state s, we choose one optimal combination using an
expert solver from the optional candidates. If the optimal score
does not improve, we consider that it is time to end. In the
test, we compare the current score with the last score. If the
score does not increase, we think this iteration should over.

V. DESIGN OF RDLADDER

In this section, we describe the proposed system RDladder
in detail. RDladder’s basic system is illustrated in Figure 2.
The NN gets the raw video from the content provider, collects

4



Raw Video

Bandwidth/
Frequency

Past Actions

Storage Weight

Network
Status

SI/
Frequency

TI/
Frequency

SI

TI

FC
64

1D-CNN
1x2,64

FC
64

FC
35

Mask
Softmax Output

Input Information Video Feature Extract 

Network Feature Extract 

Merge

Fig. 4. Neural Network Architecture Overview

the network distribution from the edge cluster, and gets the
storage limitations from the video server. Then the NN de-
termines one new combination of the resolution and duration,
which guide the video transcoding. These new video chunks
are sent to the video server and played in the client. The
client feedbacks the QoE and determines whether to end.
Figure 3 shows the training workflow overview, which is
mainly composed of a NN, a virtual player, an expert, and an
experience buffer. In this section, we start by introducing the
RDladder’s NN module. Then we explain the virtual player’s
setting and the expert solver’s design. Finally, we illustrate the
basic training methodology.

A. NN Architecture Overview
RDladder’s NN architecture is illustrated in Figure-4, and

we now explain the compositions of NN, including its inputs,
output, and network architecture.

Inputs
• Video Information Previous works have shown that

the video information has a significant impact on video
transcoding [10] [9] [4]. Different video contents have
different scene complexity, which causes a large deviation
in video size in the same quality level under VBR-
encoded videos [3]. To determine the video’s scene
complexity, we use two commonly used metrics, Spa-
tial information (SI) and Temporal information (TI), to
quantify the complexity of spatial and temporal [25]. To
have more representative information, we do not consider
each specific value of SI and TI. We prefer the statistical
information that reflects their distribution. So we use the
histograms of SI and TI for a video to represent its
video information. Specifically, we categorized these two
metrics separately within a certain number of bins (in our
setting, we set the number as 35). We use the information
about the bins and the frequency of each bin on behalf
of the metrics.

• Network Information Past works and the above analysis
have shown the importance of the network informa-
tion [26] [27]. Same as the video information, we do
not care about the fine-grained information such as the
precise bandwidth at a specific time, but we hope to know
its general distribution. So, we still consider using the

histogram to represent the network information similarly
to the video information.

• Past Action As we consider the transcoding process as
a sequence process, we still consider the past action as
part of the feature. We consider the Pt = {a1, a2, ...at}
as the feature of past action, where at reflects the action
at step t.

• Storage Cost For different video servers, the storage limit
is different. We set the weight as wϵ[0, 30] to balance the
QoE and the limit of the storage cost.

Output As we model the transcoding process as the se-
quential process, the NN outputs one new combination of the
resolution and duration from the optional candidates until the
system receives the end signal from the expert solver.

Network Architecture As shown in Figure 4, we use six
1D-CNN layers with channels=64 to extract the feature from
the video and the network information. We utilize two 64-dim
fully connected layers to extract the valuable characteristics
separately for the past action and the storage weight. Then we
merge these vectors and feed them to a 64-dim full connected
layer and a 35-dim full connected layer. Finally, we use
masked-softmax to mask the previously selected action and
get the probability of each action.

B. Virtual player

After the NN chooses a new combination, we add it to the
chosen set. The virtual player uses these combinations to play
videos virtually.

We refer to previous work [23] to calculate the download
time and update the buffer as Eq-3. At virtual time tk, we
first calculate the download time for the chosen chunk Rk

via dk(Rk)
Ck

, where dk(Rk) is the chunk size of Rk and the
Ck is the average throughput from the network trace. Then
we update the buffer Bk+1 for chunk k + 1 by the download
time, the chunk duration Lk, and the waiting time δtk such as
Round-Trip-Time(RTT).

tk+1 = tk + dk(Rk)
Ck

+ δtk

Ck = 1
tk+1−tk−δtk

∫ tk+1−δtk
tk

Ctdt

Bk+1 =

[(
Bk − dk(Rk)

Ck

)
+
+ Lk − δtk

]
+

B1 = 0

Bk ∈ [0, Bmax] , Rk ∈ R,∀k = 1, ..., N

(3)

We play the video in the virtual player to get the QoE.
Motivated by the previous works on the analysis of the
QoE [21] [23], we can see the QoE is relative to the video qual-
ity, rebuffering time, and video smoothness. In our system, we
use the classical video quality assessment V QAlog [28] [29],
which is the non-linear relationship between SSIM [30] and
the mean opinion score (MOS), to measure the video quality.
Motivated by the recent work [29], we set the parameters as
Eq-4 to calculate the video quality for each frame:

V QAlog = 75.5− 65.4

1 + e37.37∗(SSIM−0.93)
+24.4SSIM (4)

5



(a) Comic Oboe (b) Comic FCC (c) Sports Oboe
/

(d) Sports FCC

(e) Game Oboe (f) Game FCC (g) Nature Oboe (h) Nature FCC
Fig. 5. The Performance in Simulation Environments

We define the QoEmean as the average QoE in the video
time timevideo for each video. As the duration of each chunk
may be different, we define norm V QAlog(Rn) to calculate
the smoothness, which avoids the influence of duration. The
QoE function for the virtual play is described in Eq-5. We
consider the weight of rebuffing penalty α as the video quality
of the 4K video and the weight of smoothness penalty β as 1
recommended by [23].

QoEall =
∑N

n=1 V QAlog − α ∗
∑N

n=1 rebuf timen

−β ∗
∑N−1

n=1 (V QAlog(Rn+1)/Ln+1

−norm V QAlog(Rn))

norm V QAlog(Rn) = V QAlog(Rn)/Ln

QoEmean = QoEall

timevideo

(5)

We consider the HYB2, a wildly used in industrial, as the
default ABR algorithm, and we use parameters recommended
by the recent work [19]. In § VII, we will discuss the influence
of different ABR algorithms. When the virtual player plays,
we record the current time, and at time t, we check whether it
is legal for the video to switch duration. For example, we have
three combinations (1s, 2s, 4s). Then at time 0s, these duration
are all legal. If the ABR algorithm chooses the duration of 2s
as the first segment, at the next decision time 2s , the 4s
duration is illegal, so only 1s and 2s duration can be chosen.

C. Expert Solver
This solver gives us the best combination from the optional

set and gives the signal on whether to end this iteration. For
every step, the expert solver separately adds every optional
combination to the selected set and uses the virtual player
to play. After getting the QoE from the virtual player, the
expert solver calculates the score using Eq-2 and considers the
combination that gains the highest score as the expert action.
The expert solver records the max score after each step; if the
score does not increase in training, the solver gives the end
signal to the system.

2https://github.com/Dash-Industry-Forum/dash.js/wiki/ABR-
Logic#primary-rules

D. Experience buffer and Loss function
To improve the data utilization, we construct an experience

pool to store the pair of states and the expert action motivated
by [31]. As the pair of the current state and the expert action
is not relative to the current policy, we can randomly pick the
sample from the buffer during the training process, which can
take full use of previous data.

For our system, we encode our action a as the one-hot n-dim
vector. As the relevance of different actions is hard to quantify,
we use cross-entropy error as the loss function. In imitation
learning, we hope to minimize the distance between the current
policy π(θ) and the expert policy π∗. For the current state s,
we can update the model by minimizing the gap between the
current policy π(s, a : θ) and the expert action A∗. So the loss
function of RDladder can be described as Eq-6.

LRDladder = −
∑

A∗logπ(s, a : θ) (6)
E. Implementation

We now show the detail of the implementation of RDladder.
We use Tensorflow to implement the training workflow and
TFlearn to construct the NN architecture. We use python
to implement the instant solver and the virtual player. We
set the number of duration as 5, i.e., dur ∈ {1, 2, 3, 4, 5},
and set the number of resolutions as 7, i.e., res ∈
{144p, 240p, 480p, 720p, 1080p, 2k (1440p), 4k (2160p)}, so
the number of candidates is 35. For the weight of the storage
cost, we randomly choose the integer from the interval [0,30]
during training.

VI. EVALUATION

In this section, we will show our results using various
experiments. At first, we will introduce our setup of all
experiments in § VI-A, including the video datasets, network
datasets, and some baselines we will compare. Then we will
introduce our results in the simulation experiments (§ VI-B).
Next, we will discuss our trace-driven emulation experiments
(§ VI-C) and real-world experiments (§ VI-D). In this section,
we still use HYB as the default ABR algorithm, and the
influence of different ABR algorithms will be discussed in
the next section.

6



A. Experimental Setup
Video datasets We collect over 500 4K videos to provide

various video content, including four categories: games, sports,
comics, and nature. We use these 4k videos to scale different
other resolutions (144p, 240p, 480p, 720p, 1080p, 2k) via
bicubic filtering of FFmpeg with original fps. Then we use
one-pass VBR to encode these videos to get different duration
(1s, 2s, 3s, 4s, 5s) chunks via x264 with crf = 16. We cal-
culate the Structural Similarity(SSIM) for each frame referred
with the source 4k videos using FFmpeg and calculate their
V QAlog based on the SSIM.

Network datasets We collect various real-world traces from
previous work, such as FCC [17], Oboe [19], HDFS [20] and
HSDPA [18]. We use 90% traces of HDFS as the train set, and
we scale them from 0.5X to 3X to improve the diversity of the
network information. We think these data from the average of
0.4mbps to 27mbps can reflect most of the common network
environments in the real world.

Baselines To better demonstrate the results of our system,
we select four baselines to compare. We use the default 4s
duration and full resolutions as the All. We select some
resolutions with 4s duration whose bitrates are close to the
average bandwidth as Base. And we use the method V AR
mentioned by the [15], to produce the variable duration.
We consider the recommended duration by [2] and set the
max dur = {2, 4} of V AR called V AR − 2 and V AR − 4
respectively. Besides, we design the sequential greedy optimal
method SO to show the highest score in this sequential system
under given network environments. We calculate each new
score for the optional combination and select the combination
with the highest score for the selected set. We repeat this
process until the score does not improve.

B. Simulation Experiments
Overall Performance In this part, we show overall re-

sults in simulation experiments. We select four different
types (Comic, Sports, Game, Nature) videos that NN does
not see before to test. We test these videos on Oboe trace and
the FCC trace with different size weight w ∈ {0, 20} and the
scores (Eq-2) are illustrated in Figure 5. The Base selects 4
resolutions close to the average bandwidth (480p, 720p, 1080p
and 1440p in Oboe; 144p, 240p, 480p, 720p in FCC).

When w = 0, in some conditions, the performance of
RDladder + 0 is much better than Base + 0, such as
Figure 5(d) 5(g) 5(h), which indicates RDladde+ 0 chooses
better combinations even if we do not consider the benefit
of video size. Besides, we can find that in some conditions,
RDladder + 0 can be even better than All + 0, such as
Figure 5(e) (score from 42 to 45) and Figure 5(h) (score from
32 to 37), which shows the duration switch provides more
benefit using fewer resolutions in this conditions.

We can see in these experiments that the performance of
RDladder is close to the SO, especially when w = 20. For
V AR, we can see that its performance is close to the SO +
0 in most cases, but if the variable duration can save many
sizes compared with the fixed encoding, it achieves excellent

TABLE I
RESULTS OF SIMULATION EXPERIMENTS

Type Score QoE Rebuf/s
RDladder+0 34.47 (± 3.98) 34.47 (± 3.98) 13.73 (± 4.39)
RDladder+20 53.13 (± 3.78) 33.88 (± 3.74) 13.30 (± 4.08)

Base+0 30.12 (± 3.83) 30.12 (± 3.83) 22.24 (± 4.39)
Base+20 44.49 (± 3.76) 30.12 (± 3.83) 22.24 (± 4.39)

SO+0 35.94 (± 3.69) 35.94 (± 3.69) 12.48 (± 4.13)
SO+20 54.00 (± 3.77) 35.36 (± 3.76) 12.48 (± 4.23)

VAR-2+0 35.74 (± 3.00) 35.74 (± 3.00) 29.80 (± 9.60)
VAR-2+20 43.35 (± 5.32) 35.74 (± 3.00) 29.80 (± 9.60)
VAR-4+0 37.35 (± 3.47) 37.35 (± 3.47) 25.34 (± 7.74)

VAR-4+20 44.95 (± 5.83) 37.35 (± 3.47) 25.34 (± 7.74)

Fig. 6. The Results of Duration
Switch

Fig. 7. The Relative Size When w
Changes

performance, such as V AR− 2+0 compared with SO+0 in
Figure 5(f) and Figure 5(e). However, when we consider the
storage cost in w = 20, the score of V AR indeed increases
but is significantly lower than the RDladder. We show the
details in FCC, including the average number and the standard
deviation of the score, QoE, and rebuffing time in Table-I. We
can see when w = 0, RDladder improves 13% score compared
with Base and when w = 20, RDladder improves 19%, 22%,
18% compared with Base+20, V AR−2+20, V AR−4+20
respectively.

The Influence of Duration Switch To show the influence
of the duration, we design a new baseline, R4ladder, which has
the same resolutions as the RDladder, but the duration is all
4s. We test them both in 100 traces of FCC and calculate their
average scores with w ∈ {0, 15}. We compare each score and
show the results in Figure-6. We can see that the RDladder
is better than R4ladder in most scenarios, especially when the
weight of size w is small.

The Influence of size weight w To show the size change
in different size weights w, we change w from 0 to 15 and
calculate the relative size compared with the ladder when
w = 0. As shown in Figure-7, we can see clearly that as w
increases, the relative size can even decrease to 20%. It means
that if constrained by strict storage overhead, only two or three
ladders carefully selected according to the video content and
network condition can achieve satisfactory results.

Sequential Performance Furthermore, as we consider the
transcoding as a sequential process, we compare the per-
formance of RDladder and Base in the same number of
conditions as Figure 8. We set the ladder number as two, and
we can see that the RDladder is much better than Base (240p
and 480p).

7



(a) Comic (b) Sports

(c) Game (d) Nature

Fig. 8. The Sequential Performance in FCC with 2 ladders

(a) Comic HSDPA (b) Sports HSDPA

(c) Game HSDPA (d) Nature HSDPA

Fig. 9. The Performance in Emulation Environments

C. Emulation Experiments

We construct an emulation environment to test its perfor-
mance. In detail, we use mahimahi [32], a truthful emulator
to reflect the network traffic to emulate the network between
the video server and the client player. The client player
requests the chunks from the video server via the ABR
algorithms. Then the player plays videos virtually to calculate
the download time, update the current buffer, and record the
video quality and rebuffering time. After receiving the request
from the client, the video server sends the data packets of
the same size as the video chunk controlled by the congestion
control algorithm Cubic [33]. We compare RDladder+0 and
RDladder + 20 with the default setting with 3 resolutions
(240p, 480p and 720p) Base in HSDPA traces and use 4
videos to play. We run ten traces and calculate its average
number and the standard deviation, illustrated in Figure 9. We
can see RDladder+0 achieve a better average QoE than Base
in most conditions, improve 11% QoE, and reduce 35% size
on average. The relative size of RDladder + 20 compared
with the default setting is significantly reduced by 77% on
average with the cost of acceptable influence of QoE in most
cases.

(a) Mobile Cellular Networks (b) Public WiFi
Fig. 10. The First 180s of Network

(a) Mobile Cellular Networks (b) Public WiFi
Fig. 11. The Performance of Real World

D. Real world Experiments

We deploy our systems in the real world. At first, we
collect some bandwidth traces from a video player over 10
minutes. Then RDladder considers the network conditions and
the video content to decide the combination of the resolution
and duration. The server uses the setting from the RDladder
to transcode the video to the chunk. We plot the first 180s
of the collected network bandwidth and real network during
playing in the mobile cellular network and public WiFi in
Figure 10. We compare RDladder with Base which has 3
resolutions (240p, 480p, 720p in WiFi and 480p, 720p, 1080p
in cellular) as Figure 11. We can see RDladder achieve a
relatively higher QoE and much less size. RDladder reduces
53% size and improves 4.7% QoE in cellular, and reduces 44%
size and improves 36% QoE in WiFi. It is worth noticing there
is a gap between the collected trace and the real bandwidth,
but RDladder achieves great performance in both conditions.

Fig. 12. The Proportion of Each Duration Selected by Different ABR
Algorithms

Fig. 13. The Proportion of Each Resolution Selected by Different ABR
Algorithms

8



TABLE II
THE DETAILS OF 6 ABR ALGORITHMS IN OBOE

Type Score QoE Mean of Dur/s Mean of Ladder Length Mean of Video Resolution Levels
Single-past 62.55(±16.04) 53.57(±13.72) 1.36(±0.83) 3.3(±1.18) 1.59(±1.79)
Single-hm 64.25(±18.6) 55.48(±16.59) 1.83(±0.9) 3.29(±1.27) 1.97(±1.73)

Single-robust 61.57(±15.84) 52.62(±13.25) 1.15(±0.47) 3.27(±1.17) 1.62(±1.59)
Five-past 64.37(±17.34) 55.15(±15.35) 3.43(±1.59) 3.62(±1.2) 1.52(±1.6)
Five-hm 61.16(±17.11) 52.56(±14.73) 3.5(±1.75) 3.42(±1.18) 1.53(±1.8)

Five-robust 60.62(±14.02) 51.38(±11.79) 3.4(±1.84) 3.45(±1.4) 1.17(±1.7)

TABLE III
TOP 5 OF THE SELECTED LADDER IN OBOE

Type Ladder
Single-past (1s, 144p), (1s, 720p), (1s, 240p), (2s, 1080p), (2s, 2160p)
Single-hm (1s, 144p), (2s, 720p), (3s, 720p), (2s, 1080p), (1s, 240p)

Single-robust (1s, 144p), (1s, 240p), (1s, 720p), (1s, 1080p), (2s, 720p)
Five-past (5s, 720p), (3s, 720p), (5s, 144p), (1s, 144p), (3s, 480p)
Five-hm (5s, 720p), (1s, 144p), (5s, 144p), (3s, 144p), (1s, 480)

Five-robust (5s, 144p), (1s, 144p), (5s, 720p), (5s, 1080p), (1s, 240p)

VII. THE INFLUENCE BETWEEN RDLADDER AND ABR
ALGORITHM

In this section, we will discuss the influence between
RDladder and ABR algorithm. We consider the framework
of MPC and change the method of bandwidth prediction
and look-ahead horizon to get different ABR algorithms. We
consider three different prediction methods past,robust, and
hm, the first two methods have been introduced in § III-B
and the hm method is used to calculate the harmonic mean
of the past five bandwidth. Moreover, we also consider two
look-ahead horizons, single-step and five-step. We run these
six algorithms in Oboe with w ∈ {0, 20} and use different
bandwidth utilization 0.5 and 1 to improve the network
diversity. We plot the proportion of each duration selected
by different ABR algorithms in Figure 12, each resolution
selected in Figure 13, the detail of these six algorithms in
Table II and we show the top 5 of the selected ladder in
Oboe trace in Table III. We summarize four characteristics
as follows:

• RDladder improves the performance of the ABR algo-
rithm in the client. As shown in Table II, We can see that
the performance of only the 1-step look-ahead horizon is
close and even better than the 5-step horizon. And we
find that in most cases, only 2 or 3 combinations recom-
mended by RDladder can achieve great performance.

• Although the mean of the duration is close to the rec-
ommended fixed duration 4s [2], 1s and 5s duration are
the most popular duration, as shown in Figure 12. We
find that the 5-step horizon prefers more long duration
than the single-step horizon. The reason behind this is
long duration has more advantages in a long-term view,
so it prefers long duration to provide more buffer, which
improves the video quality level in the future.

• In Figure 13, the popular resolution is 144p, 720p, and
240p, but the middle resolution has less chance of being
chosen. Low resolutions are selected more due to the

network’s limitation. And 720p is the highest resolution
that the client can choose in most of these network
conditions. So, we can see that the ladder prefers the
low resolution to avoid rebuffing and cooperates with the
high resolution to achieve higher video quality.

• We find that different ABR algorithms prefer different
ladders, as shown in Table III. We can see that the long
look-ahead horizon prefers a conservative strategy and
lower resolution than the short look-ahead horizon, which
has larger influence than prediction methods.

VIII. DISCUSSION

How general is RDladder’s model? We have collected
a large amount of network and video data in the hope of
reflecting as much as possible on the real-world streaming
environments. However, there is still much unknown about
deep neural networks. Besides, as shown in § VI-D, we can
see the gap between the collected network traces and the
real network in play. Although we use the high-dimensional
representation of the network, it is hard to guarantee its
performance in any conditions. One possible approach is to
add redundant candidates, so how to balance the performance
safety and the additional size may be an interesting problem.

Is RDladder the optimal solution? We believe RDladder
is a great solution to optimize the duration and resolution.
However, we think there is still much room to improve for
the final QoE as current ABR algorithms do not fully use
the advantage of the selected resolutions and duration switch.
For example, a longer duration will likely meet bandwidth
fluctuations. If RDladder provides the same resolution with
different duration, the ABR algorithm will select the higher
QoE in its horizon but ignore the different risks. So a better
risk-aware ABR may make better use of the duration switch.

IX. CONCLUSION

In this work, we analyze the importance of resolution
optimization and duration switch, and propose joint optimiza-
tion of resolutions and duration. So we design RDladder, a
resolution-duration ladder for VBR-encoded videos via imi-
tation learning. We consider the information about the video,
network, and storage cost. We test our system in simulation,
emulation, and real-world environments and achieve near-
optimal results. In addition, we discuss the influence between
the RDladder and the ABR algorithm and introduce some
interesting characteristics with different ABR algorithms.

9



Acknowledgment We thank the anonymous INFOCOM
reviewers for their constructive feedback. This work was
supported by NSFC under Grant 61936011, Beijing Key Lab
of Networked Multimedia, and the Kuaishou-Tsinghua Joint
Project.

REFERENCES

[1] sandvine, “sandvine-releases-covid-19-global-internet-phenomena-
report,” https://www.sandvine.com/press-releases/sandvine-releases-
covid-19-global-internet-phenomena-report, 2020, [Online; accessed
7-May-2020].

[2] bitmovin, “Optimal adaptive streaming formats mpeg-dash hls
segment length.” https://bitmovin.com/mpeg-dash-hls-segment-length/,
2015, [Online; accessed 1-April-2022].

[3] Y. Qin, S. Hao, K. R. Pattipati, F. Qian, S. Sen, B. Wang, and C. Yue,
“Abr streaming of vbr-encoded videos: characterization, challenges, and
solutions,” in Proceedings of the 14th International Conference on
emerging Networking EXperiments and Technologies, 2018, pp. 366–
378.

[4] T. Huang and L. Sun, “Optimized bitrate ladders for adaptive video
streaming with deep reinforcement learning,” in Proceedings of the
SIGCOMM’20 Poster and Demo Sessions, 2020, pp. 46–48.

[5] A. Mondal, S. Sengupta, B. R. Reddy, M. Koundinya, C. Govindarajan,
P. De, N. Ganguly, and S. Chakraborty, “Candid with youtube: Adaptive
streaming behavior and implications on data consumption,” in Proceed-
ings of the 27th Workshop on Network and Operating Systems Support
for Digital Audio and Video, 2017, pp. 19–24.

[6] Google, “Recommended upload encoding settings,”
https://support.google.com/youtube/answer/1722171, 2022, [Online;
accessed 1-April-2022].

[7] Apple, “Http live streaming (hls) authoring specification for apple de-
vices,” https://developer.apple.com/documentation/http live streaming/,
2022, [Online; accessed 1-April-2022].

[8] Twitch, “Broadcasting guidelines,” https://stream.twitch.tv/encoding/,
2022, [Online; accessed 1-April-2022].

[9] J. De Cock, Z. Li, M. Manohara, and A. Aaron, “Complexity-based
consistent-quality encoding in the cloud,” in 2016 IEEE International
Conference on Image Processing (ICIP). IEEE, 2016, pp. 1484–1488.

[10] L. Toni, R. Aparicio-Pardo, K. Pires, G. Simon, A. Blanc, and
P. Frossard, “Optimal selection of adaptive streaming representations,”
ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM), vol. 11, no. 2s, pp. 1–26, 2015.

[11] C. Chen, Y.-C. Lin, S. Benting, and A. Kokaram, “Optimized transcod-
ing for large scale adaptive streaming using playback statistics,” in 2018
25th IEEE International Conference on Image Processing (ICIP). IEEE,
2018, pp. 3269–3273.

[12] Y. A. Reznik, X. Li, K. O. Lillevold, A. Jagannath, and J. Greer, “Opti-
mal multi-codec adaptive bitrate streaming,” in 2019 IEEE International
Conference on Multimedia & Expo Workshops (ICMEW). IEEE, 2019,
pp. 348–353.

[13] L. Bedogni, M. Di Felice, and L. Bononi, “Dynamic segment size
selection in http based adaptive video streaming,” in 2017 IEEE Confer-
ence on Computer Communications Workshops (INFOCOM WKSHPS).
IEEE, 2017, pp. 665–670.

[14] B. J. Villa and P. E. Heegaard, “Group based traffic shaping for adaptive
http video streaming by segment duration control,” in 2013 IEEE 27th
International Conference on Advanced Information Networking and
Applications (AINA). IEEE, 2013, pp. 830–837.

[15] S. Schwarzmann, N. Hainke, T. Zinner, C. Sieber, W. Robitza, and
A. Raake, “Comparing fixed and variable segment durations for adaptive
video streaming: a holistic analysis,” in Proceedings of the 11th ACM
Multimedia Systems Conference, 2020, pp. 38–53.

[16] M. Licciardello, L. Humbel, F. Rohr, M. Grüner, and A. Singla, “Prepare
your video for streaming with segue,” arXiv preprint arXiv:2202.09112,
2022.

[17] M. F. B. Report, “Raw data measuring broadband america 2016,”
https://www.fcc.gov/reports-research/reports/measuring-broadband-
america/raw-data-measuring-broadband-america-2016, 2016, [Online;
accessed 19-July-2016].

[18] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, “Commute
path bandwidth traces from 3g networks: analysis and applications,” in
Proceedings of the 4th ACM Multimedia Systems Conference. ACM,
2013, pp. 114–118.

[19] Z. Akhtar, Y. S. Nam, R. Govindan, S. Rao, J. Chen, E. Katz-Bassett,
B. Ribeiro, J. Zhan, and H. Zhang, “Oboe: Auto-tuning video abr algo-
rithms to network conditions,” in Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication, 2018, pp.
44–58.

[20] K. Spiteri, R. Sitaraman, and D. Sparacio, “From theory to practice:
Improving bitrate adaptation in the dash reference player,” ACM Trans-
actions on Multimedia Computing, Communications, and Applications
(TOMM), vol. 15, no. 2s, pp. 1–29, 2019.

[21] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, 2017, pp. 197–210.

[22] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson,
“A buffer-based approach to rate adaptation: Evidence from a large
video streaming service,” in Proceedings of the 2014 ACM conference
on SIGCOMM, 2014, pp. 187–198.

[23] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over http,” in Proceed-
ings of the 2015 ACM Conference on Special Interest Group on Data
Communication, 2015, pp. 325–338.

[24] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning: A
survey of learning methods,” ACM Computing Surveys (CSUR), vol. 50,
no. 2, pp. 1–35, 2017.

[25] P. ITU-T RECOMMENDATION, “Subjective video quality assessment
methods for multimedia applications,” 1999.

[26] C. Kreuzberger, B. Rainer, H. Hellwagner, L. Toni, and P. Frossard, “A
comparative study of dash representation sets using real user character-
istics,” in Proceedings of the 26th International Workshop on Network
and Operating Systems Support for Digital Audio and Video, 2016, pp.
1–6.

[27] Y. A. Reznik, K. O. Lillevold, A. Jagannath, J. Greer, and J. Corley,
“Optimal design of encoding profiles for abr streaming,” in Proceedings
of the 23rd Packet Video Workshop, 2018, pp. 43–47.

[28] H. R. Sheikh, M. F. Sabir, and A. C. Bovik, “A statistical evaluation
of recent full reference image quality assessment algorithms,” IEEE
Transactions on image processing, vol. 15, no. 11, pp. 3440–3451, 2006.

[29] H. Zhang, X. Jiang, and X. Lei, “A method for evaluating qoe of live
streaming services,” international Journal of computer and electrical
engineering, vol. 7, no. 5, p. 296, 2015.

[30] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[32] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens,
and H. Balakrishnan, “Mahimahi: Accurate {Record-and-Replay} for
{HTTP},” in 2015 USENIX Annual Technical Conference (USENIX ATC
15), 2015, pp. 417–429.

[33] S. Ha, I. Rhee, and L. Xu, “Cubic: a new tcp-friendly high-speed tcp
variant,” ACM SIGOPS operating systems review, vol. 42, no. 5, pp.
64–74, 2008.

10


