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Abstract—Congestion control (CC) algorithms based on deep
reinforcement learning (DRL) have shown their great potential
to adapt themselves to a variety of network conditions. However,
as the real-world network conditions are diverse and the opti-
mization goals for CC are made up of some contradicted metrics,
it is hard to balance these contradicted absolute valves, which
makes it difficult to faithfully reflect the algorithm performance if
only considering transient status as the reward. In this work, we
propose a novel DRL-based CC approach ZiXia, which considers
the adjusted ranking reward, the long-term relative performance
reward adjusted by the transient reward. In detail, we design
a virtual algorithm arena including the DRL-agents and other
classic algorithms as competitors in the same environment. After
these algorithms end, we rank their delay and throughput
respectively and combine the two relative rankings as the ranking
reward using the special preference. The ranking reward gives
us a more flexible and interpretable long-term evaluation method
compared with the absolute value of the transient status, which
gives us a more intuitive perspective to support multi-objection.
To get more fine-grained action rewards, we adjust the ranking
reward using a linear combination of transient status. Through
various experiments, in simulated environments, ZiXia achieves
the highest throughput and reduces 87% delay compared with
BBR, and in global real-world environments, ZiXia improves
13% throughput and reduces 3% delay than BBR.

Index Terms—Congestion Control, Deep Reinforcement Learn-
ing

I. INTRODUCTION

Congestion control as a classic core problem in computer
networks has been studied for more than 30 years [1]. In these
30 years, many algorithms have been proposed along with the
development of networks. However, with the increase of the
new network infrastructures such as 5G and transcontinental
networks, the network conditions are becoming more and more
complex [2], and new application scenarios such as live broad-
casts and mobile cloud conferences put forward new demands
about throughput and delay. Traditional heuristic algorithms
use packet loss or delay as the signal of congestion. However,
under complex network conditions, it is difficult to find an
appropriate heuristic function to handle all situations, such
as wireless networks with random loss and transcontinental
networks with large packets queue buffer.

Learning-based algorithms are proposed (such as Remy [3],
Indigo [4], PCC [5] [6] [7]) in this context, which do not
require too much manual engineering and have the potential to
fit various conditions. Deep reinforcement learning performs

well on many complex reality tasks [8], and recently many
CC algorithms based on DRL methods (such as Aurora [9],
Eagle [10], Orca [1]) have achieved excellent performance
under various network conditions.

These DRL algorithms obtain transient rewards by inter-
acting with the environment and move towards the higher
cumulative sum of transient rewards. However, it is hard to
get the proper transient reward function to truly reflect the
performance as there is a conflict between the throughput
and delay. An algorithm that prefers high throughput might
cause a large delay as it occupies the packets queue buffer and
another algorithm that prefers low latency might obtain low
throughput as its conservative strategy does not make full use
of bandwidth. So, the linear combination must balance these
two conflicting variables but this is not an easy job. We can
hardly give a proper reward function that can perfectly fit any
network conditions as the diversity of the real-world network
conditions, and an inaccurate reward function will affect the
stability and the performance of the algorithm [11].

To deal with the difficulty of designing rewards, we use the
ranking reward to evaluate the algorithm performance. We use
the relative value compared with other algorithms instead of
the absolute value to measure the performance. This method
avoids the deviation of the reward value caused by the different
network environments. No matter in any network scenario, the
algorithm’s throughput ranks high indicating that it performs
well on this aspect. We can also design special ranking reward
rules to meet special needs.

Although the ranking seems to be a great way to evaluate
performance, there is a shortcoming that cannot be ignored.
The ranking reward is too sparse which makes it difficult for
the agent to learn. So, the transient reward is still necessary.

Therefore, we propose ZiXia, a novel DRL-based CC ap-
proach, which considers adjusted ranking rewards. We use
the ranking with other algorithms under the same network
conditions to measure their long-term performance. We rank
throughput and delay separately and then combine them lin-
early using specific rules to meet diverse application require-
ments. We also use transient status to adjust the ranking reward
which provides more fine-grained action rewards.

We compare the performance of ZiXia with other state-
of-the-art CC algorithms in both simulated environments and
real-world environments. In the simulated environments, ZiXia



performs much better than most algorithms in various network
conditions, and in the global real-world environments we
deploy 8 server nodes around the world and the performance
of ZiXia is stable and competitive.

In general,we summarize the contributions as follows:

e We propose ZiXia, a DRL-based CC approach that uses
adjusted ranking reward. We design a virtual algorithm
arena to get the ranking reward and consider transient
reward to adjust it.

o We test ZiXia in both the simulated network environ-
ments and the real network environments, and we find it
achieve outstanding performance in both cases compared
with recently proposed algorithms.

II. MOTIVATION
A. Why need the ranking reward in DRL-based CC?

The answer is the reward of the DRL is too difficult to
design. Although the DRL-agent automatically moves towards
higher rewards to reduce manually engineering, the reward
itself is hard to define. As shown in the introduction, these
two conflicting parameters (throughput and delay) are difficult
to balance in various network conditions.

Just give a simple example, one algorithm A gets 50Mbps
throughput and 100ms delay when the network capacity is
100Mbps, and another algorithm B gets 1.2Mbps and 100ms
when the network capacity is 1.3Mbps. If we use the linear
combination of throughput and delay as the reward, such as
Eq. 1,

r = throughput — delay (D

the reward of algorithm A is much larger than the latter and the
agent will consider the former is much better. In the gradient
ascent for deep reinforcement learning, the agent’s strategy
will move much closer to the former and the “smart” agent
will learn to send 50Mbps, which is a disaster for the latter’s
network environment. It seems it is impossible to judge an
algorithm’s performance independently.

The ranking reward gives us another perspective about the
algorithm performance, which uses relative value instead of
absolute value. It evaluates the algorithm not by how much
throughput and delay it has achieved, but by comparison with
other algorithms under the same network conditions. This
evaluation method avoids the bias of the DRL strategy caused
by the excessive reward value brought by the different network
environments. In addition, it is easier to adjust preference for
throughput and delay using ranking, which gives us a simple
way to meet diverse needs. For example, you can set a reward
to represent that it is enough for throughput beyond half of
the competitors, but the delay ranking should be as small as
possible, which is hard to design using the linear combination
of transient status but is easy for ranking-based.

B. How to use the ranking reward in DRL-based CC?

It seems that the ranking is a great method to evaluate the
algorithm performance, but it is not a good idea to use it
directly as a reward. Long-term performance ranking is easy

to get but it is hard to get transient ranking. At time ¢, the
throughput obtained by the agent is not the result of the current
sending rate, which makes it difficult to compare transient
action. So the ranking reward is the sparse long-term reward.

Although the accurate transient reward is hard to design,
the core idea of the transient reward is to guide the algorithm
to achieve high throughput and low delay, which is similar
to our ranking reward. So we can consider transient reward
as a kind of auxiliary task reward [12] [13], which gives us
the fine-grained perspective to reflect the actions of the agent.
So we still consider the transient reward to adjust the ranking
reward.

III. DESIGN OF ZIXIA

In this section, we describe the proposed system ZiXia in
detail. ZiXia’s basic structure is illustrated in Figure 1. The
arena block provides the ranking reward, and the transient
block interacts with the environment and provides transient
data. Then the learning block adjusts the ranking reward using
the transient data and feed these new data to DRL-agents.
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Fig. 1. ZiXia’s System Overview

A. Arena Block

It is hard to evaluate the algorithm independently, so we
construct an algorithm arena to use the ranking compared with
other algorithms in the same network condition to evaluate
performance. In detail, we use multi-threads to construct this
as Figure 1. To improve the sampling efficiency of interaction
with the environment, we use multiple threads to run the
DRL algorithm. Therefore, there is not much difference in
the training efficiency compared with the pure distributed
reinforcement learning algorithm [14]. To get competitive
and diverse competitors, we carefully selected 4 classic al-
gorithms recently proposed, which include BBR [15], Cubic
[16], Vivace [6], Indigo. BBR and Cubic are heuristic-based
algorithms which widely deployed on the internet. Vivace is an
online-learning-based algorithm that uses the transient utility
to adjust its sending rate. Indigo is an imitation-learning-based
algorithm and behaves very well in some conditions.



TABLE I
STATE OF THE TRANSIENT BLOCK

the ewma number of queue delay
the ewma number of the receiver received rate
the ewma number of the sender send rate
the current congestion window
the time from start until now

dEZG‘yewm(L
deli_ratecwma
send_ratecwma
cwnd
duration

Every round of training, each thread runs 30s in the same
network condition, whose parameters include delay, loss ra-
tio, length of the queue buffer, and bandwidth traces. After
all of them end, we calculate the throughput and the 95th
percentile per-packet one-way delay. Using multi-threads, we
obtain some different values of DRL-agents and calculate their
average value to eliminate accidental errors. To meet the real
needs of different applications, we rank these two sets of
values separately in ascending order and use different weights
(a and P) for the linear combinations of delay ranking rankge;
and throughput ranking rankyp,; as ranking reward 7rqnking-
(See in Eq. 2).

Tranking = QX ranktput — B *rankge 2

B. Transient Block

Input Although the network is partially observable, we
hope to provide the agent with as much useful information
as possible to help the agent understand the environment. As
mentioned in [9], increasing the history length of the state
would increase the performance of the agent, so in this work,
we choose the past five states as history information to balance
the trade-off between the performance and the training cost.
The agent updates the state when it receives an ACK, and
makes a decision every 10ms. At time ¢, the state s; can be
represented as Table I.
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Fig. 2. ZiXia’s Training Workflow

In detail, deli_ratecym, indicates the EWMA (Exponen-
tially Weighted Moving-Average) of the delivery rate which
reduces the impact of too larger or too small values, and
the send_ratecymq 1S the EWMA of the send rate. To get
the more accurate delay, we calculate the delay as delay =
RTT — min_rtt and update the min_rtt when these algo-
rithms run. We normalize them respectively to deal with the
difference in the order of magnitude.

Output The state-space of the cwnd itself is too large as
the network conditions vary greatly in reality. So, it would be
a disaster for reinforcement learning if we directly use cwnd
as the action space. In this work, we picked 7 values in the

[-1,1] as the action for the algorithm. At time ¢, the cwnd;41
will be updated from cwnd; by the current action a; following
the function:

cwnds11 = cwndy * (1 + at) 3)

Transient Reward Previous work spends a lot of time
optimizing reward functions [1] [10], but in our work, the
transient reward is still necessary but does not need much
engineering work. We just use the simplest linear combination
of delay and throughput, which can be represented as

ry = 0.1 x throughput — 100 * delay 4)

The unit of throughput is Mbps and delay’s unit is s. In this
setting, the r; plays a supporting role compared with 7.4y king-

C. learning block

Adjusted Reward The typical interaction process of rein-
forcement learning is that at time ¢, the agent first observes the
state of the environment seS, and then selects action a based
on the strategy 7(s) and action a acts on the environment to
cause the environment state to change to s’, and at the same
time, the agent receives the reward r [8].In our work,we obtain
the r; immediately in transient block and store the (s, a,r¢, s’)
in the transient data buffer.For arena block, the agent receives
the 7'-qnking after it ends, and all states and the actions on this
trace share the same reward.

In our framework, the tuple of the (s,a,s’) is the same in
both transient block and arena block as these data are produced
by the same trace and the same interaction. So, we can use
transient reward to adjust the ranking reward and define the
Tadjusted aS:

Tadjusted = Tranking + 7 @)

We use ~y to balance these rewards. In this way, we get the
data (s, a,qdjusted, s’) wWhich used for agent to train.

Dual-PPO and Adaptive Entropy Weight Decay As the
state space of the congestion control is large which makes
it difficult for reinforcement learning to converge to a stable
value, the Dual-PPO [17] is used in our work. The probability
ratio p(#) denotes the probability ratio between current policy
mo(at|st) and the old policy moiq(ai|s:). It can be extremely
large, which may lead to an excessively large policy devia-
tion. So the standard PPO [18] involves a ratio clip which
reduce the influence of extreme values. However,when the
mo(a¢|se) > moa(at|s:) and advantage value A, <0, we can
see p¢()A, > 0 and this may also cause excessively large
policy deviation. So in the Dual-PPO, if the A, > 0, it will
work equal to the standard PPO algorithm and if the A <0,
Dual-PPO will clip the p,(8) with the lower bound of the A,.

The value of entropy affects the speed and performance
of reinforcement learning training. To alleviate this issue,
we use the adaptive entropy weight decay (AEWD) [11] to
dynamically adjust the entropy weight.
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TABLE II
PARAMETERS. DURING THE TRAINING.
average trace capacity delay loss queue
10.33Mbps 1-100 ms  0%-15%  20-1000 packets

IV. EVALUATION

We use mahimabhi [19] to simulate the real network environ-
ments which include the loss ratio, delay, queue length, and
the capacity of the link. Table I list the network parameters
used in the training. To improve the efficiency of the training,
we use 4 threads for the classic algorithm to compare and 12
for DRL-agents that are used to collect data. We train ZiXia
on a 16-core server, and each thread runs for 30s under the
same network conditions. Then we calculate the throughput
and 95th delay to rank them respectively. We set the a=2,5=1
in Eq. 2 to calculate the 7;.4y,1ing, Which means we consider it
is cost-effective to improve throughput rankings at the cost of a
bit delayed ranking. After getting the rqnking, We modify the
data buffer collected by agents to get the adjusted data using
Eq. 5. Many previous work focus on optimal the v in Eq. 5
[20] [21], but in our work, we just set the v as 1. According
to Eq. 4, the r; must be less than the % of the throughput,
and the average throughput in training is only 10.33Mbps, so
the ranking reward plays a leading role.

As Figure 3(a), ZiXia achieves the highest ranking reward
after about 2000 iterations. We test its performance in both
simulated environments and real-world environments. To show
the ability to support special preference, we design another
algorithm ZiXia_delay, whose ranking reward in training as
Figure 3(b) and more details will be discussed below.

A. Testbed and Baselines

We take 8 state-of-the-art CC algorithms published in recent
years as the baselines. Three of them are the heuristic-based
algorithms, BBR (model-based), Cubic (loss-based) and Copa
(delay-based) [22]. For the learning-based algorithms, we
select Indigo (imitation-learning-based), Eagle (DRL-based),
Orca (hybrid of heuristic-based and DRL-based). And we

TABLE III
RESULTS OF REAL NETWORK TRACE
algorithm throughput/Mbps delay/ms
ZiXia 1.43 50.91
Cubic 1.42 1917.40
Proteus 1.42 2025.77
Copa 1.42 756.02
BBR 1.42 383.73
Indigo 1.29 122.17
Vivace 1.20 1628.24
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Fig. 5. The Performance in Synthetic Trace
also choose the online-learning-based algorithms, Vivace and
Proteus [7].

B. Simulated environments

Real Network Trace We use the reality trace from FCC
[23] and fix the queue buffer at 100 packets to test the
performance of ZiXia. We use eight of them which does not
appear in the training set and to reduce accidental errors,
we run every algorithm 5 times and calculate the average
standard deviation which uses an error bar to represent. We
show some results in Figure 4, and Table III shows average
throughput and delay in this experiment. In Figure-4(b) and
Figure-4(d), we observe that the online-based CC algorithms
are not suitable for these dynamic bandwidths, which does not
give these algorithms enough time to converge. Cubic achieves
high throughput but meets large delay as Cubic uses packets
loss as congestion signal and chooses to occupy the queue
buffer first. ZiXia achieves the highest throughput and reduces
87% delay compared with BBR.

Synthetic Trace To better display the details of the al-
gorithm execution process, we synthesize one trace whose
capacity is from 12Mbps to 60Mbps. This trace changes the
network bandwidth every 10s, and to meet the reality we add
10ms delay and 1% random loss using mahimahi. Figure-5
shows the details of each algorithm. We observe that Cubic
and Indigo fail in this experiment. The reason for Cubic is it
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Fig. 6. The Performance of Real-World Environments

can not figure out random loss or congestion loss. For Indigo,
the imitation-learning-based CC, there is a big gap between
this experiment and its training environment. Proteus achieves
the highest throughput, but the large delay is unacceptable.
Vivace meets similar conditions, as these online-based CC
algorithms need more time to converge. Copa, BBR, and ZiXia
perform well in this experiment, but the first two algorithms
lack the ability to adapt quickly when the network changes
rapidly. At the 40s point of the trace, the capacity changes
from 60Mbps to 48Mbps, Copa and BBR fail to adjust their
strategy. At this point, the queue buffer is full of packets as the
network capacity decreases and Copa suffers the performance
degradation for the increase of delay. For BBR, the detection
of the environment is delayed, which can not give BBR the
current network environment status in time. ZiXia performs
best in this experiment, which quickly adapts to network
bandwidth changes. This experiment shows the detail of these
algorithms and ZiXia performs best and demonstrates the
ability to quickly adapt to changes in the network.

C. Real-World environments

To verify the performance of our algorithm in real scenarios,
we deployed our algorithm on eight nodes around the world
and compare its performance with recent work. For every test,
we send a flow from Beijing and last 30s, and each algorithm
runs 5 times to reduce the accidental error. We show results
in Figure 6, and calculate their average throughput and delay
in Table V. Inspired by previous work [1], we divide these
servers into two groups, 4 inter-continental nodes and 4 intra-
continental nodes. In these experiments, we add recent state-
of-the-art DRL-based CC algorithms (Orca and Eagle) to test.

Intra-Continental Scenarios In intra-continental scenarios,
we have two servers in china and two servers in Tokyo and
Singapore. Intra continental network usually has low link delay
and we observer that the delay of all algorithms is less than
100ms. We get the highest throughput in these four servers
and we are significantly better than other algorithms in the
Singapore node. Eagle performs unstable with large variance

TABLE IV
LOCATION OF SERVERS USED IN REAL-WORLD ENVIRONMENTS.
Continent City, Country
Asia-1 Nanjing, China Chengdu,China
Asia-2 Tokyo, Japan Singapore
Europe Frankfurt, German Moscow, Russia
North America | Silicon Valley, United States  Virginia, United States
TABLE V
RESULTS OF REAL-WORLD ENVIRONMENTS
algorithm throughput/Mbps delay/ms
ZiXia 73.22 123.02
BBR 64.66 127.57
Proteus 61.91 111.55
Vivace 53.55 105.45
Cubic 53.19 119.57
Orca 49.57 103.95
Eagle 49.55 100.00
Indigo 28.37 91.60

at each node especially in terms of delay. Orca performs well
in most servers but fails in the Singapore node which only
gets half of ZiXia’s throughput.

Inter-Continental Scenarios Inter-continental network en-
vironments are more complicated as they need to transmit
longer distances which use different strategies and network
structures [1]. This makes it difficult for algorithms optimized
for specific links to work well under such network conditions.
In these scenarios, ZiXia is still competitive compared with
the recent algorithm which achieves the highest throughput on
three of the four servers. Eagle still behaves unstable, espe-
cially in Moscow. Orca performs not well except for Moscow
and we can observe that it does not achieve throughput higher
than 60Mbps. Indigo performs great in Moscow but fails in
other servers as there is a big gap between the real network
environment and the environment in imitation learning.

Multi-objection The ranking reward gives us a more in-
terpretable algorithm evaluation method compared with the
previous work [24], which makes it simple to support multi-
objection. We get another algorithm ZiXia_delay, using dif-
ferent ranking reward as :

r _ J2xrankypu — rankdelay, 1f Tankpe <3
ranking — 6 — T‘ankdelay7 else
(6)
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This means we think it is enough for throughput beyond other
there algorithms in this arena, but the delay ranking should
be as small as possible. In Figure 3(b), ZiXia_delay after
about 2000 iterations significantly exceeds other algorithms in
ranking reward. Compared with Figure 3(a), we find classic
algorithms perform well under simple preference, but under
complex preference, such as Eq. 6, our algorithm is signifi-
cantly better than them which shows our ability to accurately
reflect specific preferences. We also test the ZiXia_delay and
ZiXia in real-world scenarios as Figure 7. We respectively run
it 5 times from Beijing to Virginia and Toronto, and calculate
their mean and variance. We can see that in each scenario,
the performance of ZiXia_delay is close to the ZiXia, but the
former gets lower delay as our preference.

V. CONCLUSION

We presented ZiXia, a DRL-based CC algorithm using
the adjusted ranking reward. ZiXia introduces this long-term
interpretable performance evaluation method into DRL-based
CC algorithms which avoids the difficulty in reward design and
also considers transient perspective to alleviate the problem
of sparse rewards. This relative evaluation method gives us a
more flexible way to support the special complex preference
for throughput and delay. We have done a lot of experiments in
the simulated environment and global real-world environment,
and ZiXia has achieved great performance compared with the
recent state-of-the-art algorithm in all experiments.
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